

Webinar

What's new in PASS/START-PROF 4.85 version.

Dynamic Analysis

Dr. Alex Matveev,
PASS/START-PROF Product Manager
25 February 2021

PASS/START-PROF

Smart Pipe Stress Analysis & Optimal Sizing

Presenter:

Dr. Alex Matveev START-PROF Product Manager Development, Training, Support of START-PROF Since 2005

matveev@passuite.com

LinkedIn: linkedIn: linkedin.com/in/alex-mat/veev/

PASS/START-PROF

Comprehensive pipe stress, flexibility, stability, and fatigue strength analysis with related sizing calculations

Smart Pipe Stress Analysis & Optimal Sizing

- Broad Applicability
- Unsurpassed Usability
- Powerful Capabilities
- Extensive Databases
- Flexible Configurations
- Extensive Code Support
- Widely Used

PASS/Start-Prof | Broad Applicability

- Developed since 1965
- 3 000+ Active users (companies)
- 10 000+ licenses
- User interface and documentation languages: English, Chinese, Russian
- Piping codes: 32
- Wind, Seismic, Snow, Ice codes: 18

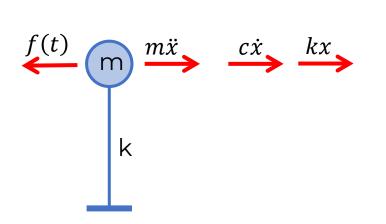
PASS/Start-Prof | Broad Applicability

- Process Industry Piping
- Oil and Gas Pipelines
- Utility Network Pipelines
 - District Heating
 - Natural Gas
 - Water
- Power Generation Piping

PASS/START-PROF | New features of v.4.85

- Modal analysis. The automatic mass discretization is implemented
- Updated code ASME B31.1-2020 Power Piping (USA)
- Added ASME B31G-2012 Remaining Strength of Corroded Pipeline Analysis Level 1 and level 2 in START-Elements: Original B31G (.67dL), modified B31G (.85dL), Exact Trapezoid, Equivalent Area, Effective Area
- Added new object: Ball Joint. Allows rotation of two connected pipes with friction. The friction moment depends on pressure value
- Added new object: Snubber
- Added new features into START-PROF calculator, built-in into the input fields

The full changelog can be found at **Knowledge Database**



PASS/START-PROF | New features of v.4.85

- Added spring hanger and support selection and database for the following manufacturers:
 - Gradior
 - Pihasa
 - Pipe Support Systems GmbH (PSSI)
 - Piping Technology and Products Inc. (PT&P)
 - Sarathi
- Pipes, Tees, Bends and Reducers Database according to the EN codes: EN 10216, 10217, 10253
- PASS/START-PROF API Interface
- New integration options: import of piping models from Excel and AutoCAD
- Improved START-AVEVA Interface
- Significantly improved the import from CAESAR II. Added support for CAESAR II v.8, v.9, v10, v11, v12. Model converter become smarter

System with one degree of freedom

Sum of the forces acting on the mass

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

m – mass

c – damping

k – stiffness

f(t) – external force as function of time

x = x(t) – displacement as function of time

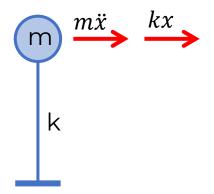
 $\dot{x} = \dot{x}(t)$ – velocity as function of time

 $\ddot{x} = \ddot{x}(t)$ – acceleration as function of time

Let's assume that

$$c = 0$$
 no damping

$$f(t) = 0$$
 no external forces


$$x = A \cdot \sin(\omega t)$$

$$\ddot{x} = -\omega^2 \cdot A \cdot \sin(\omega t) = -\omega^2 x$$

$$-m\omega^2 x + kx = 0$$

$$-m\omega^2 x + kx = 0$$

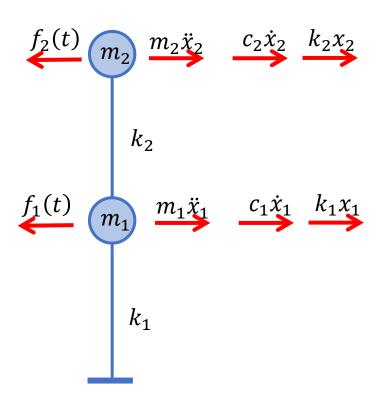
$$x = A \cdot \sin(\omega t)$$

A - amplitude

$$(k - m\omega^2)x = 0$$

Solution 1: x = 0

Solution 2: $\omega = \sqrt{k/m}$, x = any value


 ω – angular frequency, rad/sec

 $f = \omega/2\pi$ – technical (ordinary) frequency, 1/sec

T = 1/f – period, sec

System with 2 and more masses

$$M\ddot{x} + C\dot{x} + Kx = F(t)$$

M – Mass matrix of piping system

C – Damping matrix of piping system

K – Stiffness matrix of piping system

F(t) – External force vector as function of time

x = x(t) – Displacement vector as function of time

 $\dot{x} = \dot{x}(t)$ – Velocity vector as function of time

 $\ddot{x} = \ddot{x}(t)$ – Acceleration vector as function of time

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$F(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$(K - M\omega^2)x = 0$$

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \qquad K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

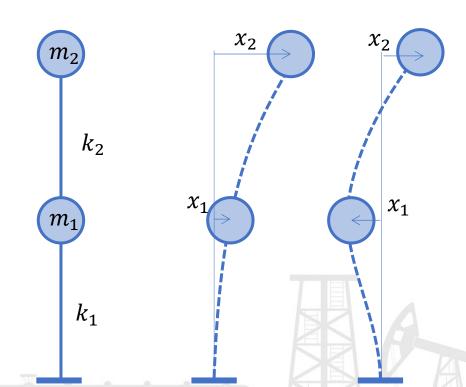
Assuming $k_1 = k_2 = k$, $m_1 = m_2 = m$

$$M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \qquad K = \begin{bmatrix} 2k & -k \\ -k & k \end{bmatrix}$$

$$det\begin{bmatrix} -m\omega^2 + 2k & -k \\ -k & -m\omega^2 + k \end{bmatrix} = 0$$

Natural frequencies

$$\omega_1 = 0.618 \sqrt{k/m}$$


$$\omega_2 = 1.618\sqrt{k/m}$$

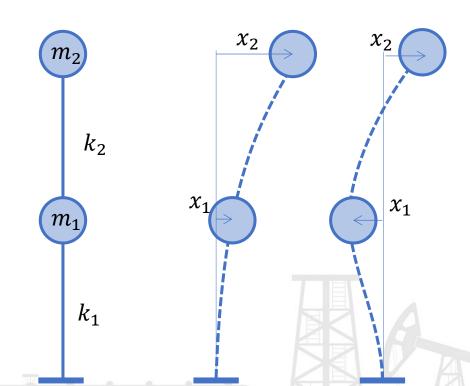
Mode Shape 1

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} 0.618 \\ 1 \end{bmatrix}$$

A – amplitude (unknown)

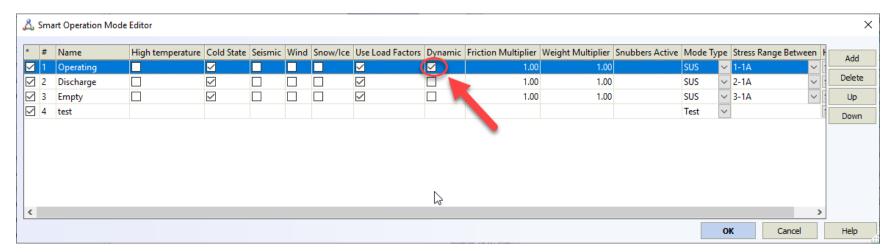
Modes shapes always orthogonal to each other

$$\begin{bmatrix} 0.618 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1.618 \\ 1 \end{bmatrix} = 0$$

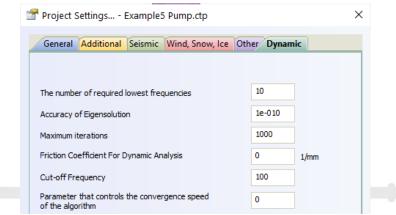

Mode Shape 1

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} 0.618 \\ 1 \end{bmatrix}$$

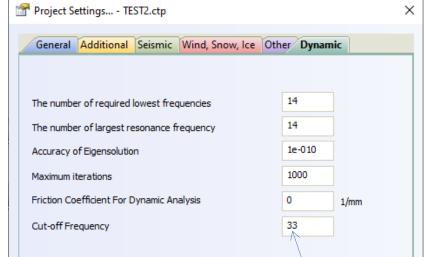
Mode Shape 2


$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} -1.618 \\ 1 \end{bmatrix}$$

A – amplitude (unknown)



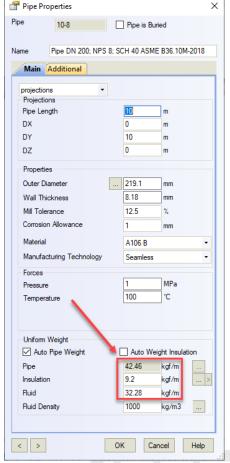
To run the modal analysis, open any piping model and turn on the "Dynamic" checkbox the operation mode editor. Need to choose that operating mode for which you want to run the dynamic analysis. After that run analysis as usually do for static analysis:

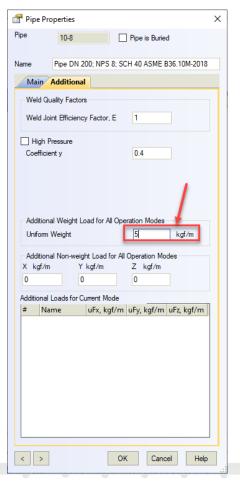


Additionally you may specify the dynamic analysis properties in project settings:

Automatic mass distribution. Additional invisible nodes are added automatically depending on cut-off frequency specified by user. The recommended value is 33 Hz or 100 Hz 478.30 ka 478.30 kg

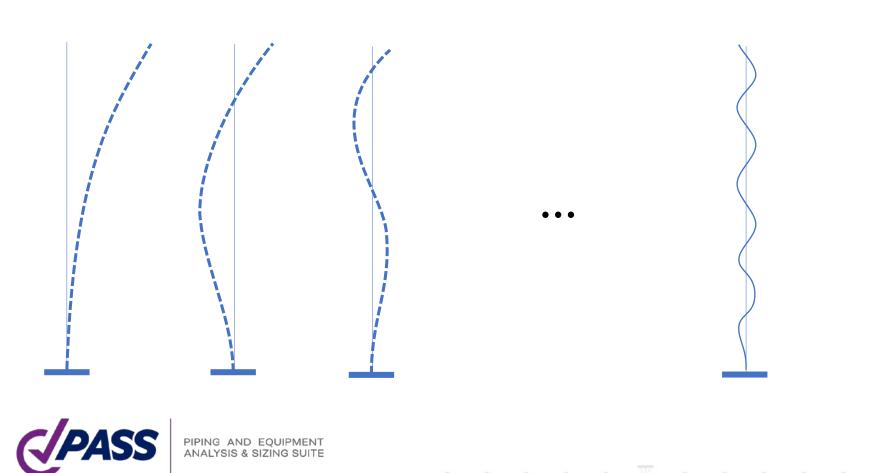
f - is the first natural frequency for a simply supported pipe. The required minimum mass span L value can be determined from this equation (2 masses per length)

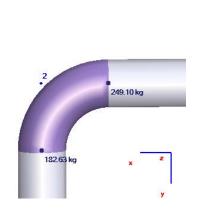

$$f = \frac{\pi}{2L^2} \sqrt{\frac{EI}{m}} \qquad \Box \qquad L = 0.5 \sqrt{\frac{\pi}{2f}} \sqrt[4]{\frac{EI}{m}}$$

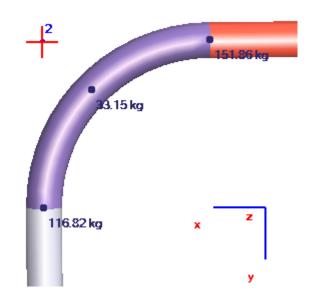


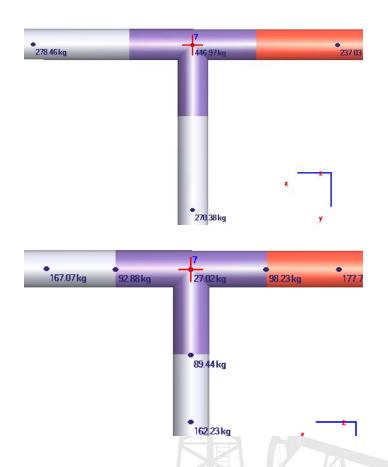
Automatic mass distribution. Additional invisible nodes are added automatically depending on cut-off

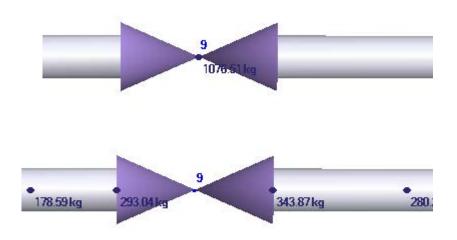
478.30 kg

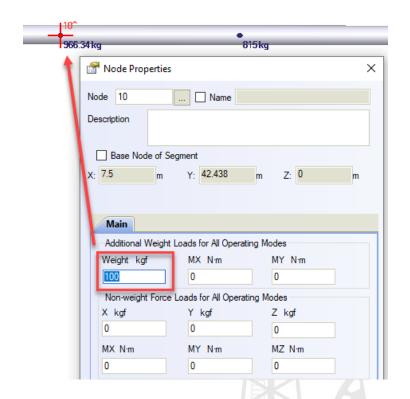

Distributed mass on a pipe elements is calculated as sum of pipe, insulation, fluid and additional weights. Non-weight and additional force-based loads are ignored



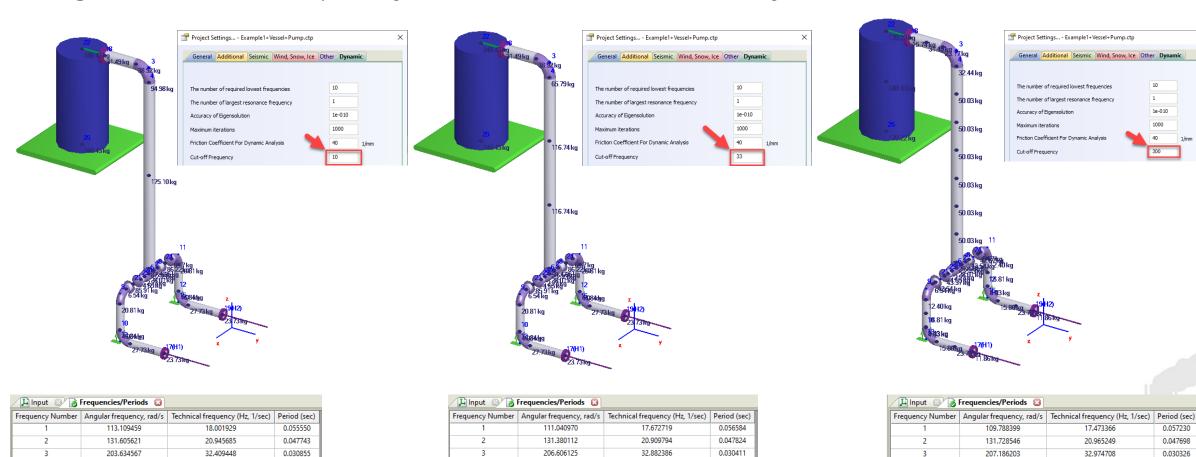

For system with **n** degrees of freedom (DOF), we can find **n** natural frequencies and **n** mode shapes. The real piping system has infinite DOF number, but we model it using the finite number of DOF to simplify the task


Bend is modeled with 2 or 3 masses depending on bend arc length. Long radius bend can have >3 masses




Tee is modeled with 1 or 4 masses depending on the header and branch lengths

Valve and flange is modeled with 1 or 2 masses depending on the length



Additional concentrated mass can added as weight load in the node

The greater cut-off frequency, the more accurate results you receive, but slower

234,484634

314.930725

363.781738

424.457306

519.586060

629,296692

762,457825

37.319389

50.122782

57.897662

67.554478

82.694690

100.155679

121,348932

0.026796

0.019951

0.017272

0.014803

0.012093

0.009984

0.008241

225.810043

313.478729

355.759949

383.256012

690.079956

856.000977

1018.131042

5

35.938785

49.891689

56.620954

60.997089

109.829636

136,236787

162.040588

0.027825

0.020043

0.017661

0.009105

0.007340

0.006171

0.026394

0.019907

0.013874

0.011757

0.008117

0.007134

238.056213

315.621979

366.457306

452.880798

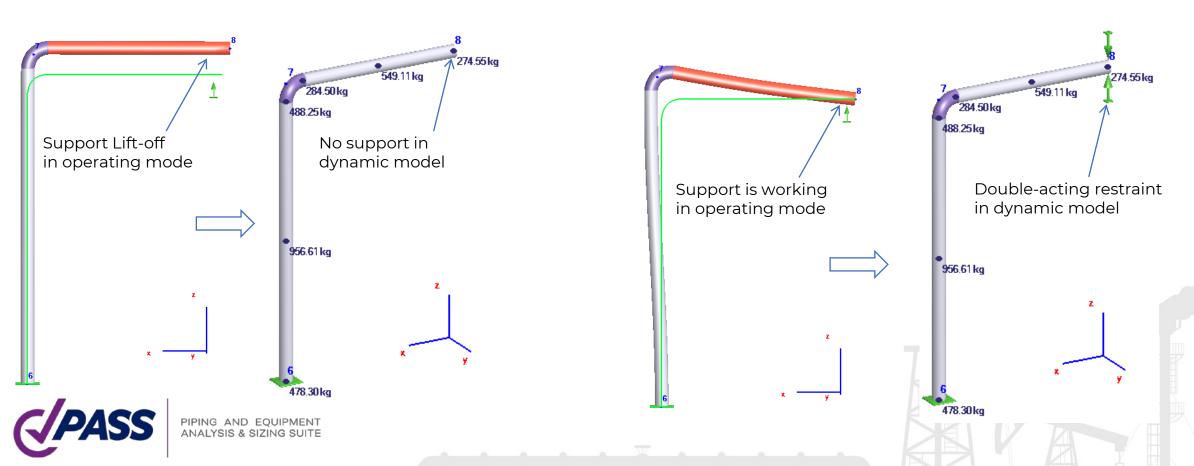
534.400024

774.097290

37.887823

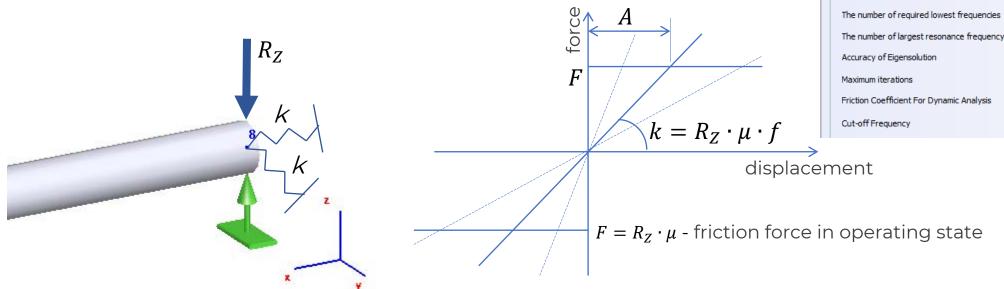
50.232798

58.323492


72.078218

85.052405

123.201410


Modal analysis can be applied only for linear systems. START-PROF linearize nonlinear systems.

One-way restraints, gaps condition is taken from operating mode. If single-directional restraints is working, then it is replaced by double-acting restraint. If it's lift off then it's removed from dynamic analysis.

Friction forces are modeled using springs with effective stiffness $k = R_Z \cdot \mu \cdot f$

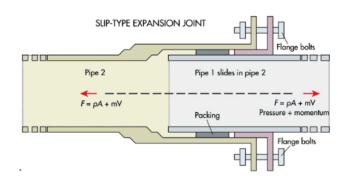
 R_Z - vertical load on support in operation mode, μ - friction factor

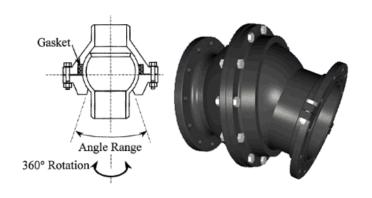
f=1/A – friction coefficient, 1/mm. The recommended value f=40 1/mm

A – approximate vibration amplitude at the support with friction, mm. If f=40, then A=0.025 mm

If f = 0, then friction is not considered in analysis. If f = 10000 1/mm, then friction modeled as almost rigid restraints

The factor f allows to "tune" the piping computer model to receive a results more corresponding with field measurements

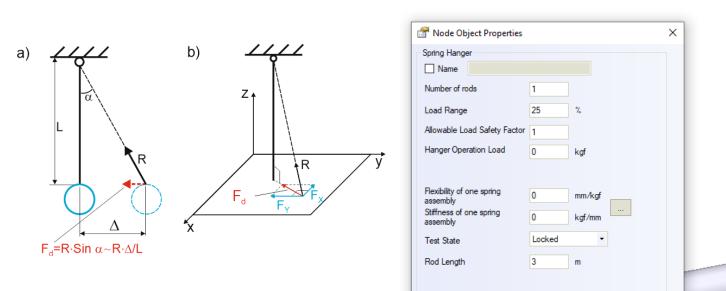

Project Settings... - Example1+Vessel+Pump.ctp

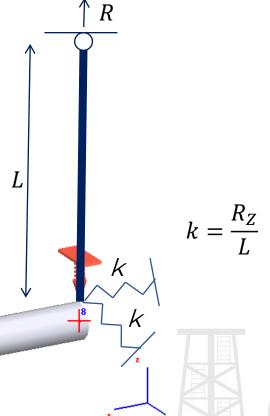

General Additional Seismic Wind, Snow, Ice Other Dynamic

1e-010

The same coefficient f is applied to linearize the friction effect in the following PASS/START-PROF objects:

- Slip Joint
- Ball Joint
- Torsion Joint





Rotation rod linearization

For spring hangers and rigid hangers with a rotating rod, the additional horizontal springs are added to take into account the pendulum effect

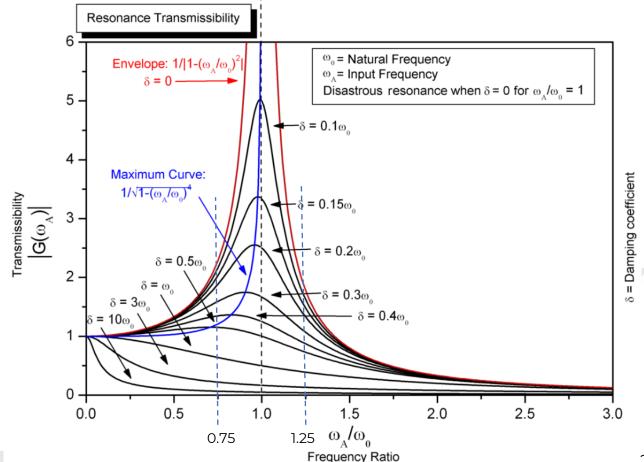
Cancel

To avoid the risk of resonance with a rotating equipment and reduce the effects of other dynamic loading, it is recommended that lowest (first) natural frequency be no less than 4-5 Hz. See DNVGL-RP-D101 2.2.7.1

Increasing the natural frequency usually requires more supports, and increases the cost of piping system.

Also the increasing of natural frequency increases the stiffness of piping system that leads to problems with thermal expansions, the expansion stresses and support loads become higher.

The modal analysis is used to calculate the natural frequency of pipe systems connected to compressors and reciprocating pumps. The resonance effect occurs, when natural frequency of the piping system is close to rotating equipment vibration or pulsation frequency. To avoid the resonance effect and reduce the risk of fatigue failure, it is recommended to ensure that following criterion is met:


$$0.8 < \frac{f_{ip}}{f_j} < 1.2$$

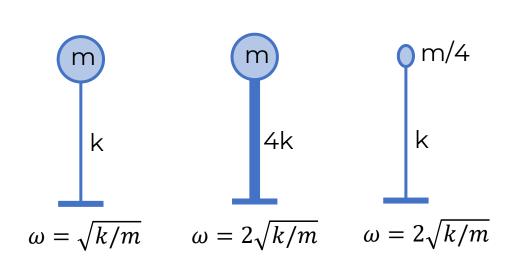
For higher frequencies in case of high frequency equipment the criteria may be less conservative (GOST 32388 code):

$$0.9 < \frac{f_{ip}}{f_i} < 1.1$$

 f_{in} - equipment vibration or pulsation frequency #i

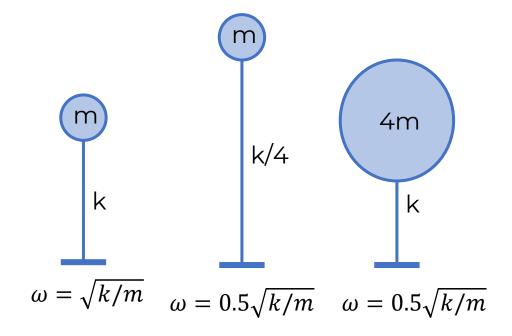
 f_i - piping system natural frequency #j

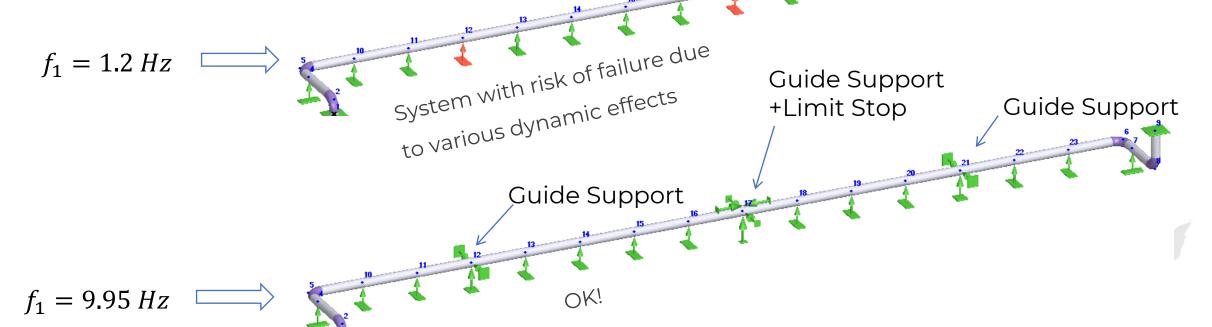
Energy Institute Guidelines for the Avoidance of Vibration Induced Fatigue Failure in Process Pipework T 10.3.2.1: "The pipework natural frequencies should be outwith ± 20% of the excitation frequency"


API 618 6th: The predicted mechanical natural frequencies shall be designed to be separated from significant excitation frequencies by at least 20%

$$0.8 < \frac{f_{ip}}{f_j} < 1.2$$

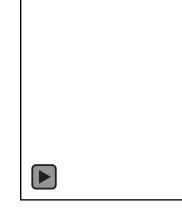
 f_{iv} - equipment vibration or pulsation frequency #i


 f_j - piping system natural frequency #j


To increase the natural frequency we need to increase the system stiffness or reduce the mass

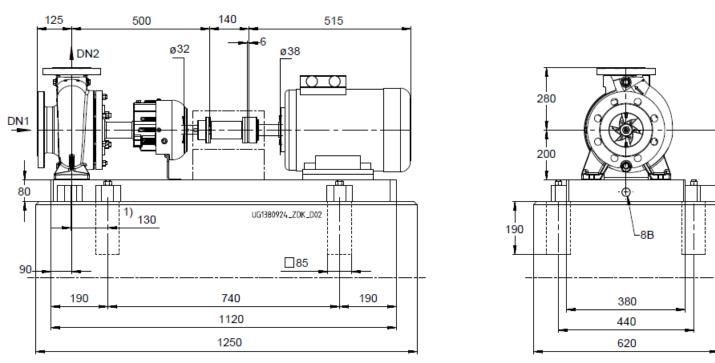
To reduce the natural frequency we need to reduce the stiffness or increase the mass

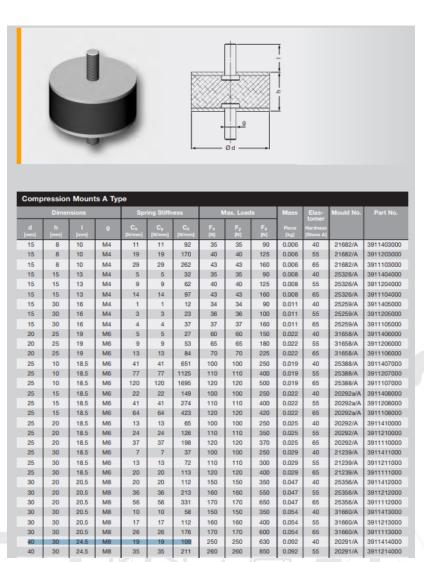
When system is designed to withstand only dead weight and thermal expansion, usually it has a great flexibility in horizontal plane that may lead to high sensitivity to various dynamic effects



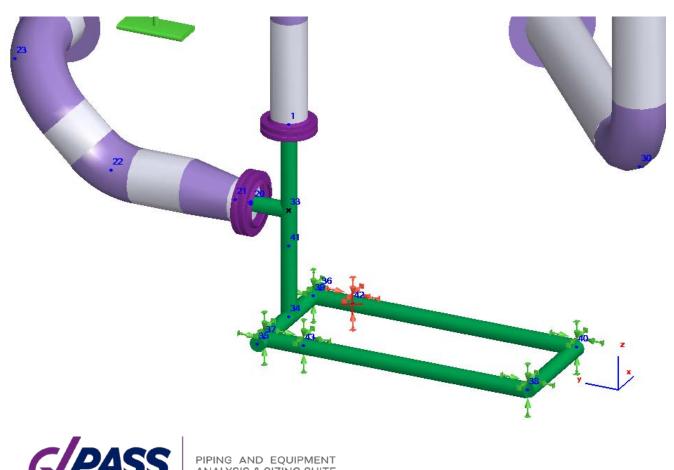
Adding supports at the point with greatest displacements on mode shape increases the natural frequencies

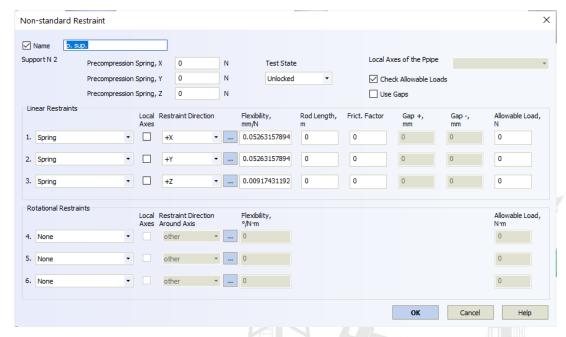
$$f_1 = 1.2 \, Hz$$


$$f_1 = 9.95 \, Hz$$

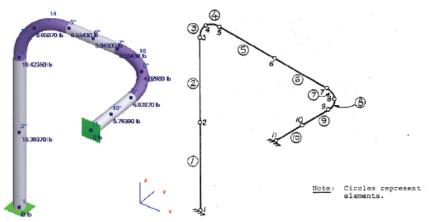


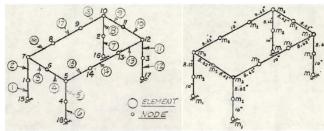
Support and nozzle stiffness strongly affect the natural frequencies

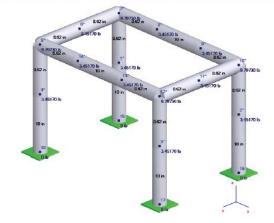



¹⁾ Baseplate may also be attached in the region of the casing feet. Refer to KSB if necessary

Adding supports at the point with greatest displacements on mode shape increases the natural frequencies




PASS/START-PROF Verification Manual


1.2 NRG2 Dynamic response of Hovgaard Bend

PHINT OF	LHEODE-CLES		
MOC	CINCULAR		
NU	#REJUE464	FREUUENCY	PERIOD
	(MAD/SEC)	(CYCLES/SEC)	CRECI
1	.17936+03	.28536+02	.35048-01
ź	.3504E+03	,55776+02	.1743E-01
3	.51216+03	.81506+02	.1227E-01
	.8906E+03	.14176+03	.7055E-02
2.		4-3451	4

Input 🔝 🕝 Frequencies/Periods 🚨							
Frequency Number	Angular frequency, rad/s	Technical frequency (Hz, 1/sec)		Period (sec)			
1	179.413727	28,5545	81	0.035021			
2	350,406250	55.7688	87	0.017931			
3	512,399841	81.5509	68	0.012262			
4	890.875061	141.7871	70	0.007053			
5	1023.038940	162.8217	704	0.006142			
			_				

		N A T I	J F A L F R		185,
MODE.	CIPCULAR				
MAJASTA	LH WON ZECT	ICACL EZ/ZECT		FOLERANCE	
ı	CO. 30000 no	0.11125 63	0.8484E-05	0.2554F-06	
2	0.727/45 03	0.11505 03	0.06355-02	0.70436-99	
	0.00106 03	4.1372F 03	0.72406-02	0.33446-06	
- 4	0.13561 06	0.215#6 03	0.46345-02	0.0	

Comparison of Natural Frequency Values for Coffee Table Problem

Values Ref.[15]	Crede Ref.[15]	Tuba and Wright Ref.[L7:]	ANSYS Ref.[16]	EPIPE Model A
110	109.0	110.5	111.5	111.2
117	115.9	115.0	115.9	115.8
134	135.0	134.7	137.6	137.2
214	212.5	211.7	218.0	215.8
359	350.4	385.5	404.2	404.3

🔼 Input 🐵 🚡 I	Frequencies/Periods 🔞				
Frequency Number	Angular frequency, rad/s	Technical frequency (Hz, 1/se		z, 1/sec)	Period (sec)
1	699.135315		111.270841		0.008987
2	727.810425		115.834527		0.008633
3	862.125488		137.211533		0.007288
4	1356.368042		215.872679		0.004632
5	2541.062256		404.422519		0.002473

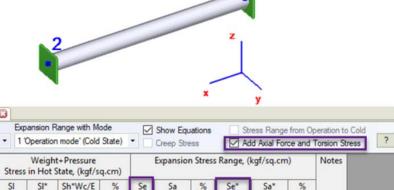
PASS/START-PROF | ASME B31.1-2020

2018 Edition Issues

See the article in the PASS Blog about this issue

104.8.3 Stress Due to Displacement Load Ranges. The effects of thermal expansion and other cyclic loads shall meet the requirements of eq. (17).

$$S_E = \frac{iM_C}{Z} \le S_A \tag{17}$$


104.8.1 Stress Due to Sustained Loads. The effects of pressure, weight, and other sustained mechanical loads shall meet the requirements of eq. (15).

(U.S. Customary Units)

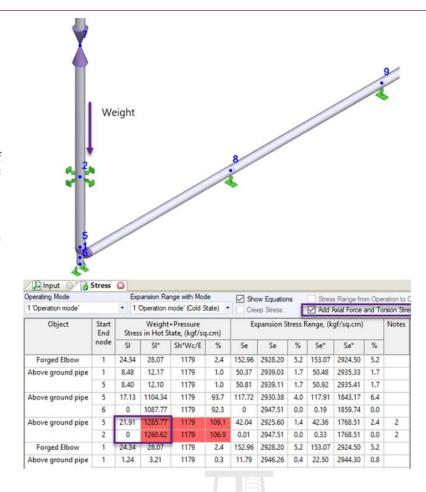
$$S_L = \frac{PD_0}{4t_n} + \frac{0.75iM_A}{Z} \le 1.0 S_h$$
 (15)

2924.03

1179

Input Stress Stress

End


node

Operating Mode

1 'Operation mode'

Object

Above ground pipe

PASS/START-PROF | ASME B31.1-2020

The ASME B31.1-2020 has two most important changes with respect to 2018 edition:

- · Changed the equations for calculating of sustained, occasional and expansion stresses
- All SIF and k-factors should be calculated according to ASME B31J-2017. PASS/START-PROF do this automatically, without user intervention

2018

2020

104.8.1 Stress Due to Sustained Loads. The effects of pressure, weight, and other sustained mechanical loads shall meet the requirements of eq. (15).

(U.S. Customary Units)

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le 1.0 S_h$$
 (15)

104.8.2 Stress Due to Occasional Loads. The effects of pressure, weight, other sustained loads, and occasional loads shall meet the requirements of eq. (16). The loads described in para. 101.5 may be considered as occasional loads if the time limitations of the term k are met.

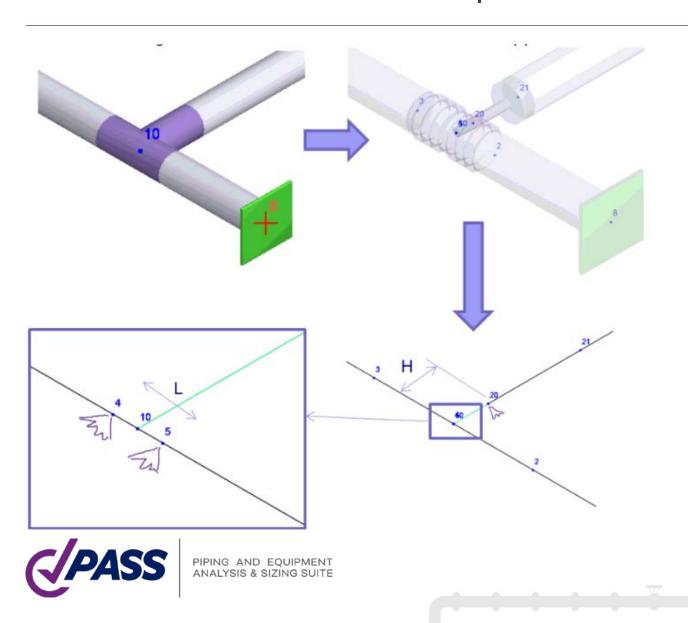
(U.S. Customary Units)

$$\frac{P_0 D_0}{4t_{**}} + \frac{0.75 i M_A}{Z} + \frac{0.75 i M_B}{Z} \le k S_h \tag{16}$$

104.8.3 Stress Due to Displacement Load Ranges. The effects of thermal expansion and other cyclic loads shall meet the requirements of eq. (17).

$$S_E = \frac{iM_C}{Z} \le S_A \tag{17}$$

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITI Figure 104.8-1 Equations (15), (16), and (17)

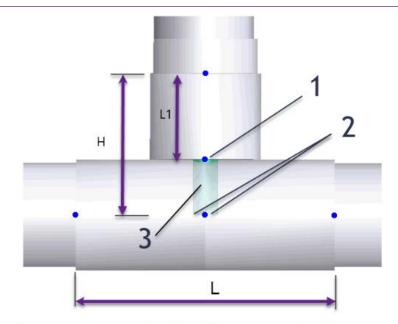

$$(15) S_L = \sqrt{\left[\left|\frac{PD_o}{4t_n} + \frac{I_a F_a}{A_p}\right| + \frac{\sqrt{(I_i M_{iA})^2 + (I_o M_{oA})^2}}{Z}\right]^2 + \left(\frac{I_t M_{tA}}{Z}\right)^2} \le S_h$$

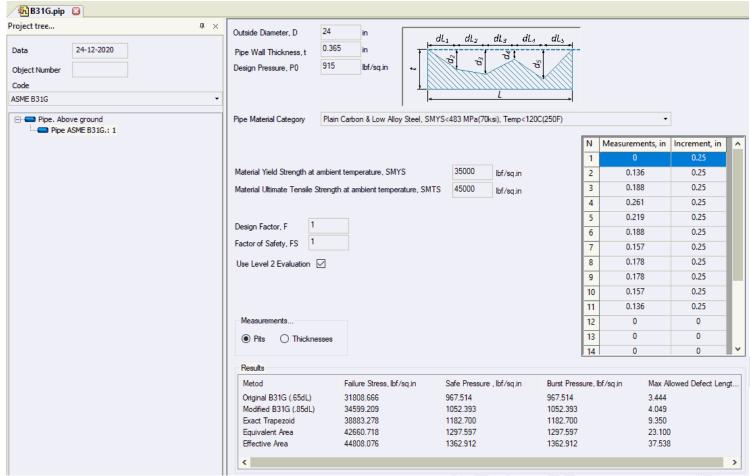
$$(16) S_O = \sqrt{\left[\left| \frac{P_o D_o}{4t_n} + \frac{I_a F_b}{A_p} \right| + \frac{\sqrt{(I_i M_{iB})^2 + (I_o M_{oB})^2}}{Z} \right]^2 + \left(\frac{I_t M_{tB}}{Z} \right)^2} \le k S_h$$

(17)
$$S_E = \sqrt{\left[\left|\frac{i_a F_c}{A_p}\right| + \frac{\sqrt{(i_i M_{iC})^2 + (i_o M_{oC})^2}}{Z}\right]^2 + \left(\frac{i_t M_{tC}}{Z}\right)^2} \le S_A$$

- I_o = sustained out-of-plane moment index. In the absence of more applicable data, I_o is taken as the greater of 0.75 i_o and 1.00 (i_o taken from ASME B31J, Table 1-1).
- I_t = sustained torsional moment index. In the absence of more applicable data, I_t is taken as the greater of 0.75 i_t and 1.00 (i_t taken from ASME B31J, Table 1-1).
- $i_a=$ axial force stress intensification factor. In the absence of more applicable data, $i_a=$ 1.0 for elbows, pipe bends, and miter bends (single, closely spaced, and widely spaced), and $i_a=i_o$ (or i when listed) in ASME B31J for other components
- i_b i_o, i_t = in-plane, out-of-plane, and torsional stress intensification factors, respectively, for piping component as defined by ASME B31J, Table 1-1

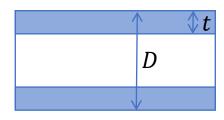
PASS/START-PROF | ASME B31.1-2020

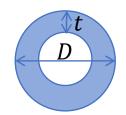



Figure C-2-7 Branch and Run SIF and k-Factor Intersection Orientations

PASS/START-PROF | ASME B31G

ASME B31G Remaining Strength of Corroded Pipeline


Fig. 2.1-1 Corrosion Parameters Used in Analysis Longitudinal axis of pipe Measured longitudinal extent of the corroded area, L_M Measured maximum depth of corrosion



Barlow's formula for pipe without flaw

$$P = \frac{\sigma_0 2t}{D}$$

 σ_0 - allowable stress

P – burst pressure

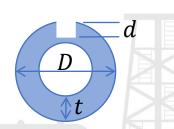
t – pipe wall thickness

D – outside diameter

Original B31G For defect length $L \leq \sqrt{20Dt}$. Parabolic defect

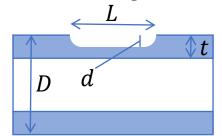
$$P = \frac{\sigma_{flow} 2t}{D} \left(\frac{1 - \frac{A}{A_0}}{1 - \frac{A}{A_0 M}} \right)$$

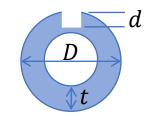
$$D \quad d$$


$$A_0 = \text{Lt}$$
 $A = \frac{2}{3} \text{dL}$ L – defect length d – max defect depth $SMYS$ – Specified Minimum Yield Strength

$$M = \sqrt{1 + \frac{0.8L^2}{Dt}}$$

Original B31G For defect length $L > \sqrt{20Dt}$. Rectangular long defect



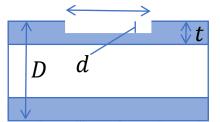


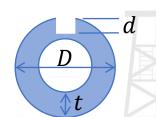
0.85dL method for defect length $L \leq \sqrt{50Dt}$

$$P = \frac{\sigma_{flow} 2t}{D} \left(\frac{1 - \frac{A}{A_0}}{1 - \frac{A}{A_0 M}} \right) \qquad D \qquad d$$

$$A_0 = Lt$$
 $A = 0.85dL$

$$A_0 = \text{Lt}$$
 $A = 0.85 \text{dL}$ $\sigma_{flow} = \text{SMYS+10,000psi}$

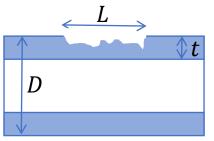

$$M = \sqrt{1 + 0.6275 \frac{L^2}{Dt} - 0.003375 \left(\frac{L^2}{Dt}\right)^2}$$

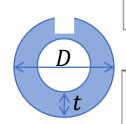

0.85dL method for defect length $L > \sqrt{50Dt}$

$$A = 0.85 dL$$

$$L^2$$

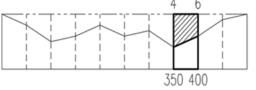
$$M = 0.032 \frac{L^2}{Dt} + 3.3$$
 analysis & sizing suite







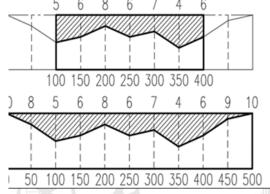
Effective area method


$$P = \frac{\sigma_{flow} 2t}{D} \left(\frac{1 - \frac{A}{A_0}}{1 - \frac{A}{A_0 M}} \right)$$

Case 1

Case 2

$$A_0 = \text{Lt}$$
 $A = area of damage$

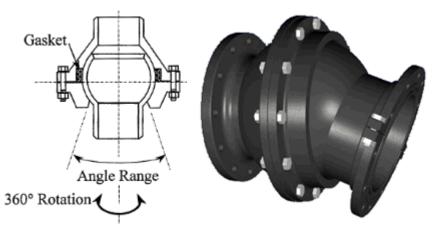

$$\sigma_{flow}$$
=SMYS+10,000psi

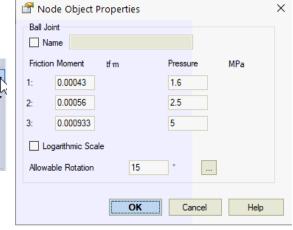
300 350 400

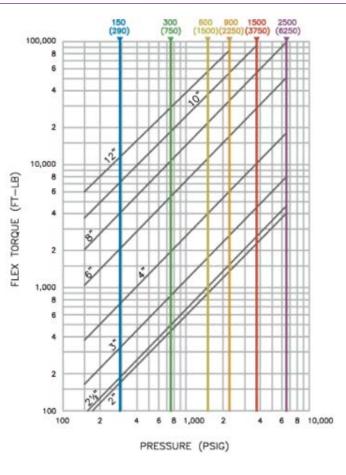
Case 3

Method #5 RSTRENG Effective Area, B31G Level 2

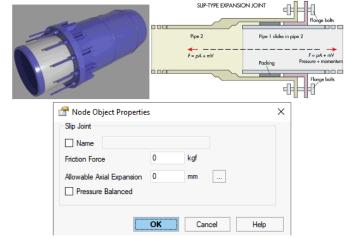
Calculates the corroded area A calculated numerically using the trapezoid method. All possible combinations of local metal loss A are calculated, n!/2(n-2)! iterations are required to examine all possible combinations of local metal loss with respect to surrounding remaining material. The exact trapezoid method is just a special case of an effective method.




Case 5


PASS/START-PROF | Ball Joint Object

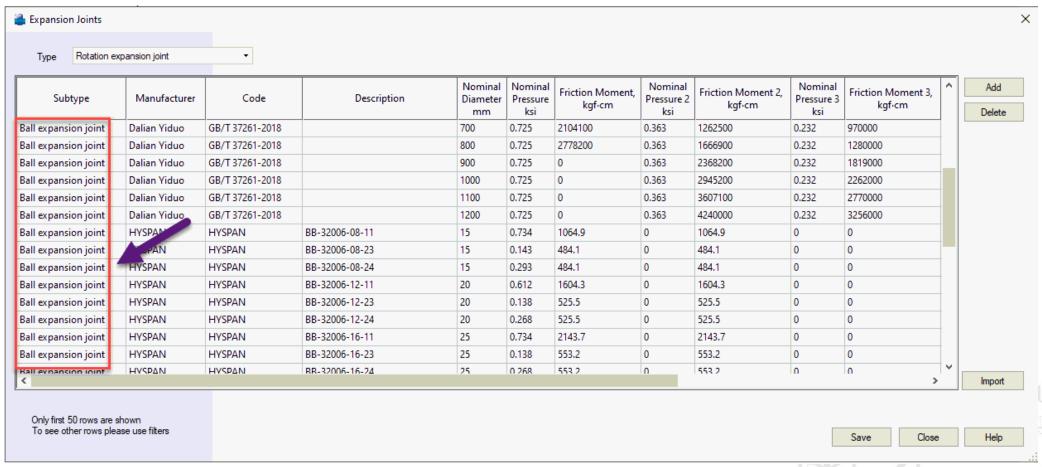
Allows rotation of two connected pipes around 3 axes



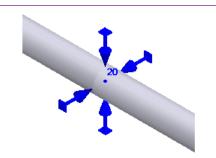
$$M \ge M_f$$

$$M = \sqrt{M_x^2 + M_y^2 + M_z^2}$$

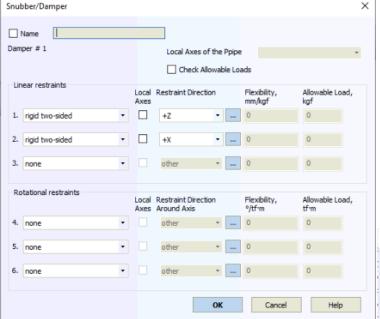
Torsion Joint

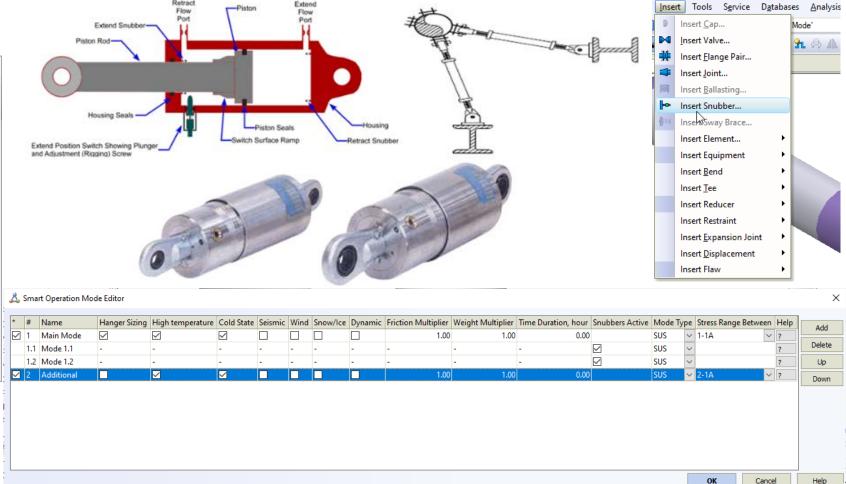


Name		
Friction Moment	0 kgf-cm	
Allowable Rotation	0]

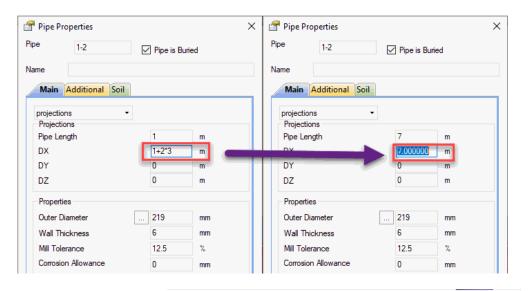

PASS/START-PROF | Ball Joint Object

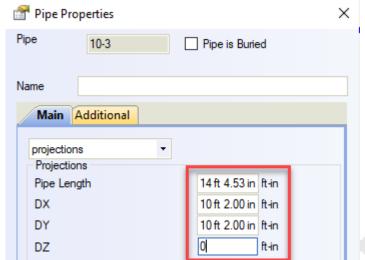
Ball Joint Database




PASS/START-PROF | Snubber Object

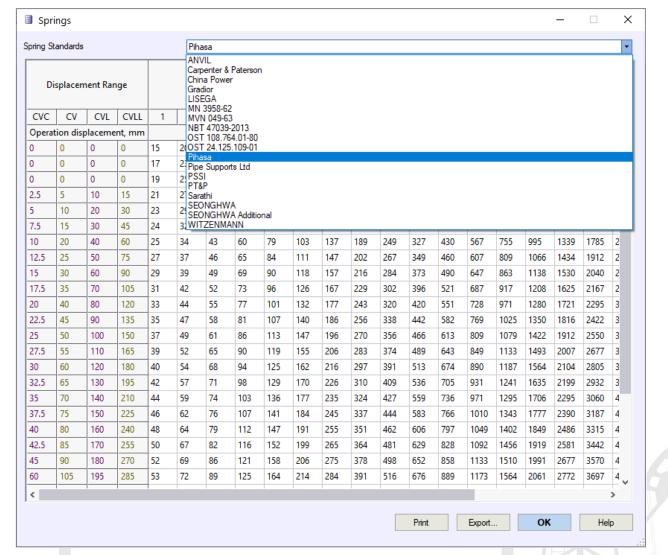
Snubbers are usually used for reducing the displacements, stresses and support loads from Earthquake events.


Snubbers doesn't resist to the thermal displacements of piping system and doesn't reduce the piping flexibility. But in case of quickly applied occasional load, snubbers instantaneously form a practically rigid restraint.



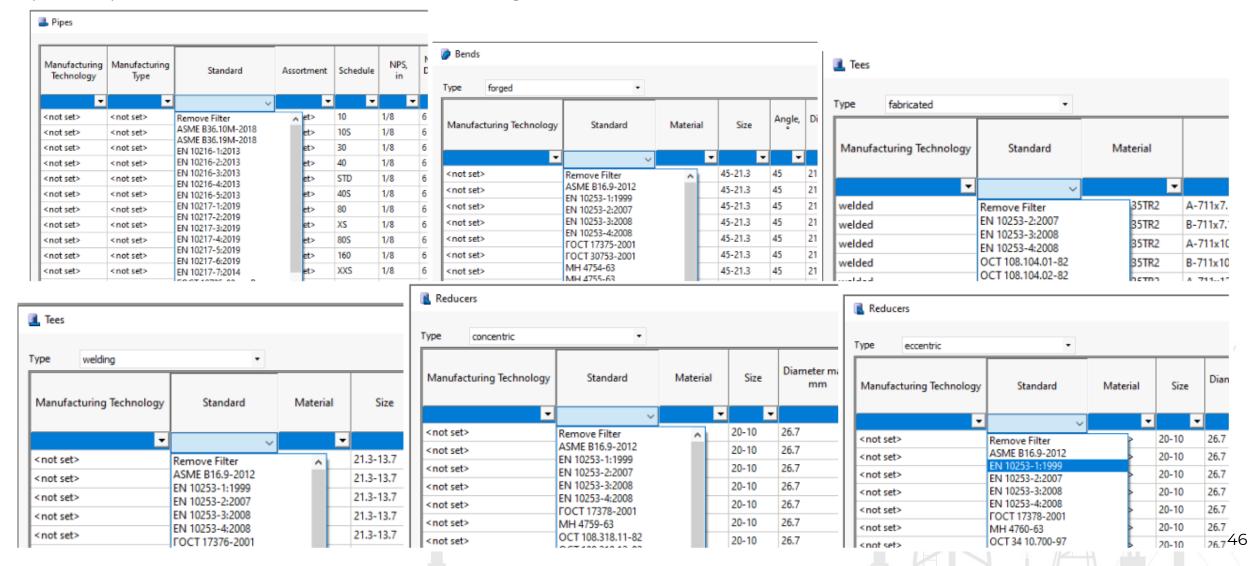
PASS/START-PROF | Built-in Calculator Update

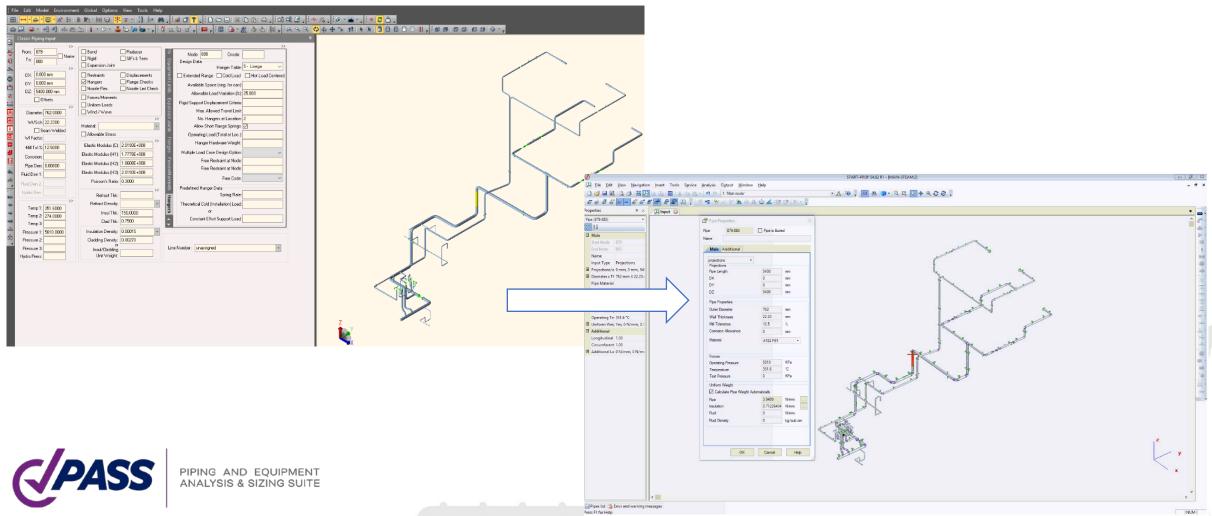
Added ability to input data in any units and combine different units. Added feet-inch representation.



PASS/START-PROF | New spring hanger tables

Added spring selection: Gradior, Pihasa, Pipe Support Systems GmbH (PSSI), Piping Technology and Products Inc. (PT&P), Sarathi


Please type in Q&A section which spring manufacturers should be added in the next versions of START-PROF?


PASS/START-PROF | Pipe & Fitting Database

Updated Pipes, Tees, Bends and Reducers Database according to the EN codes: EN 10216, 10217, 10253

PASS/START-PROF | Import from CAESAR II

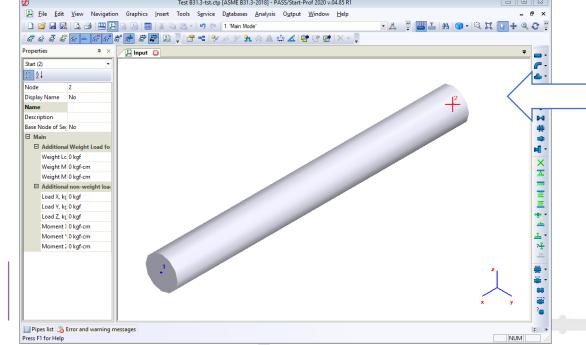
Significantly improved the import from CAESAR II. Added support for CAESAR II v.8, v.9, v10, v11, v12. Model converter became much smarter

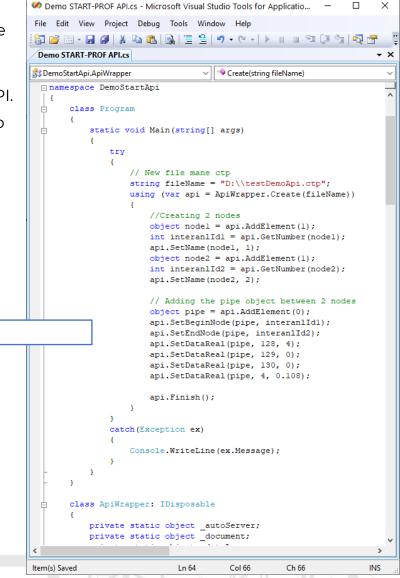
PASS/START-PROF | API Interface

Now we offer the PASS/START-PROF **API** (application programming interface) that allows for side applications on **C#**, **Basic**, **etc**. to create, modify and analyze models using START-PROF and read the analysis results.

The plugins for Export to PCF, Import from PCF, Export to CAESAR II, Import from CAESAR II, Import from AVEVA, Internal quality assurance software were written with the help of PASS/START-PROF API.

Any company can create its own plugin for seamless integration of PASS/START-PROF software into company's workflow.

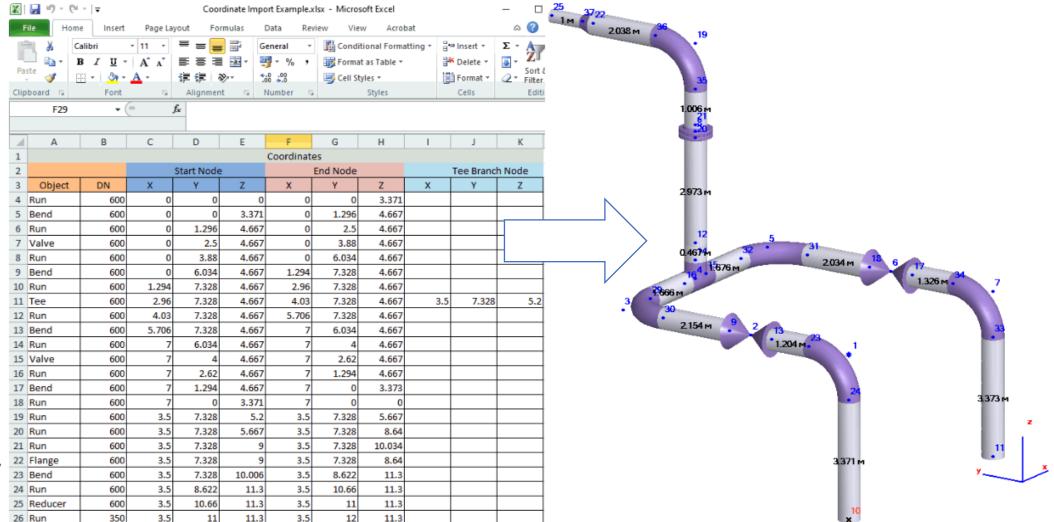

• Invoke PASS/START-PROF stress analysis from 3D modeling software in background and transfer the analysis results back or generate the reports following the corporate templates


Data conversion between PASS/START-PROF and any other corporate software

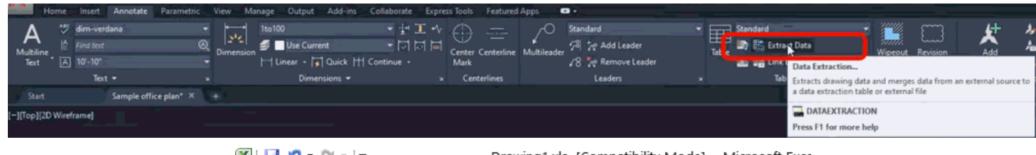
• Piping model optimization or running complex sequences of parametric model piping stress

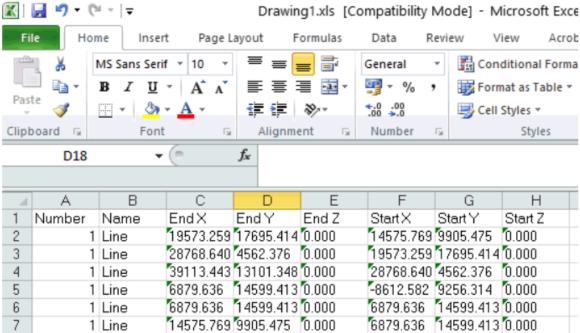
analysis

And so on...



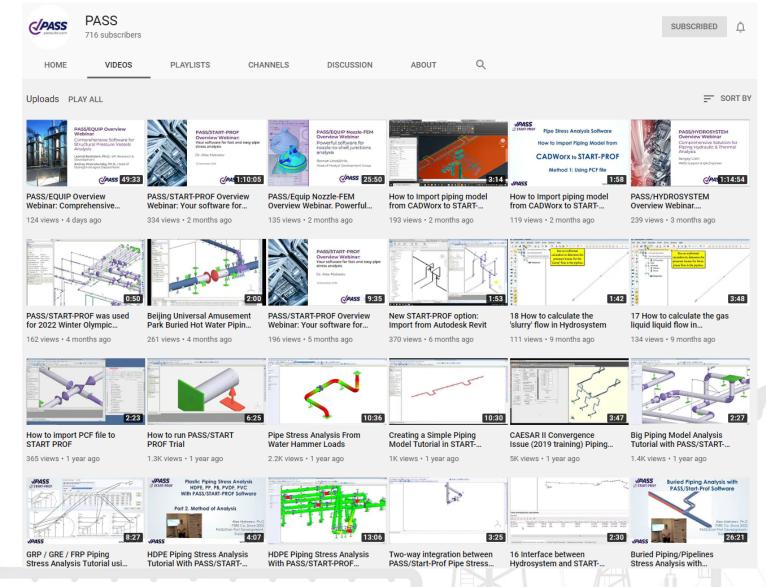
PASS/START-PROF | Import from Excel & AutoCAD


New integration options: import from MS Excel



PASS/START-PROF | Import from Excel & AutoCAD

New integration options: import from AutoCAD



PASS/START-PROF | Features

Subscribe to our YouTube channel!

You will find a lot of PASS/START-PROF training videos at:

www.youtube.com/passuite

PASS/START-PROF | Resources

Subscribe to our Social Media to Learn More!

- Web site: <u>www.passuite.com</u>
- YouTube Channel: <u>www.youtube.com/passuite</u>
- LinkedIn: <u>www.linkedin.com/company/passuite/</u>
- Facebook: <u>www.facebook.com/PASSuite</u>
- Twitter: twitter.com/passuitecom
- More than 50 articles about pipe stress analysis and PASS/START-PROF features https://whatispiping.com/category/start-prof

Q & A

P: +7 495 225 94 34

F: +7 495 368 50 65

E: sales@passuite.com

W: www.passuite.com

Get a Free 30-days PASS Trial License: www.passuite.com/trial

P: +7 495 225 94 34

F: +7 495 368 50 65

E: sales@passuite.com

W: www.passuite.com

Thank YOU!